zaterdag 18 april 2020

Pathways to deterioration in SARS-CoV-2 I: is enhancement of ACE2 in the RAAS system key?

In this "Deterioration series", I will elaborate on the mechanisms underlying the severity of SARS-CoV-2 infection. I made this summary of mechanisms known to contribute to severe complications in COVID-19 patients. There is an ever growing body of knowledge since SARS-CoV-1 (2003), the first SARS-Coronavirus that was associatied with the same mechanisms as are observed in SARS-CoV-2. From this BoK and SARS-CoV-2 reports can be gathered that the following mechanisms are involved: 


Intertwined! Mechanisms of COVID/ SARS-CoV-2 pathogenesis

In this message, I will discuss the influence of SARS-CoV-2 on dysregulation of the Renin-Angiotensin-Aldosterone System (RAS/RAAS). Notably, disruption of ACE2 upregulates Angiotensin II (Ang II). Ang II in its turn increases blood pressure. Actions on the Ang II type I receptor (AT1) adversely affects the vascular wall and enhances oxidative stress, resulting in endothelial damage and endothelial cell apoptosis. Oxidative stress increases expression of plasminogen activator inhibitor type I, resulting in the recruitment and binding of inflammatory cells to the endothelium, which leads to inflammation and thrombosis. Aside from ACE2, there is ACE. Bradykinin is a substrate for ACE. Bradykinin has vasodilator and natriuretic properties. ACE inactivates bradykinin and is therefore known as kininase II. ACE inhibition increases the level of bradykinin, rendering the vasculature permeable. Thus, reduction of ACE adversely affects degradation of bradykinin, increasing the risk of 'leaking' vessels.

How ACE2 is affected by SARS-CoV-2 pathogens
The spike glycoprotein of SARS-CoV-2 is known to use human (and other mammal, with the exception of some rodents) Angiotensin Converting Enzyme 2-receptors. The ACE2-receptor is found in type II alveolar cells (AT2) of the lungs, esophagus epithelial cells, enterocytes from ileum and colon, nasal cavity, vascular endothelia, renal tissue (kidneys), epithelia of the small intestine, testes and on the epithelial cells of oral mucosa (High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa, International Journal of Oral Science, 24 February 2020), as well as in the brain stem and neural cortex. SARS invades ACE2-enriched cells, only to replicate itself very quickly in order to contract other cells. The infection of type II pneumocytes and release of virus in the respiratory tract with close proximity to the pulmonary capillary bed has been thought to allow systemic spread of virus to distant organs (ACE2 Receptor Expression and SARS Infection Depend on Differentiation of Human Airway Epithelia, Journal of Virology, December 2005). 

Uncertainty: is ARDS an adequate classification?
It is yet unclear what exactly constitutes sudden deterioration in critically ill SARS-CoV-2 patients. A sudden deterioration in patients with oxygen deprivation is labelled "Acute Respiratory Distress Syndrome" (ARDS). It is prone to doubt whether ARDS, characterized by bilateral infiltrates, hypoxaemia and dyspnea (Acute Lung Injury and ARDS: Pathophysiology and Treatment, Missouri Medicine, Jul-Aug 2010), is an adequate classification for the pathophysiology associated with SARS-CoV-2 (COVID-19 Pneumonia: ARDS or not?, Critical Care 24, Article number 154 (2020)). In general, the role of specific pathogens for development of ARDS is considered to be difficult to assess (Acute Respiratory Distress Syndrome and Pneumonia: A Comprehensive Review of Clinical Data, Clinical Infectious Diseases, Vol. 43 Issue 6, 15 September 2006).

Pathological findings of an early COVID case study: overactivation of T cells
In one case concerning pathological findings of COVID-19 associated with ARDS, oxygen saturation remained above 95% until the fourteenth day of illness. Day 14 of the illness, hypoxaemia worsened and oxygen saturation dropped below 60%, followed by cardiac arrest. Bilateral diffuse alveolar damage with cellular fibromyxoid exudates was observed, as well as peeling of pneumocytes and hyaline membrane formation in the right lung; the left lung displayed pulmonary oedema with hyaline formation. These findings were regarded suggestive of early-onset ARDS. Mononuclear inflammatory infiltrates dominated by lymphocytes were seen in both lungs. One of major contributions to deterioration in this case was likely an overactivation of T cells. While peripheral CD4 and CD8 T cells were reduced, they were hyperactivated. High proportions of HLA-DR (presenting antigen and providing a ligand to T cells) and CD38 (glycoprotein on the surface of immune cells) were seen. Concentrations of CCR6+ Th17 (T-helper cells) were high, CD8 T cells were found to harbor high concentrations of cytotoxic granulates (Pathological findings of COVID-19 associated with ARDS, The Lancet, February 18 2020). Similar observations were made in a 2005 study (ACE2 Receptor Expression and SARS Infection Depend on Differentiation of Human Airway Epithelia, Journal of Virology, December 2005).

Cytokine storm and invasion of the Central Nervous System
Cytokine storm, an overreaction of the hosts' immune system, is coined to explain the mechanisms behind sudden deterioration (The cytokine release syndrome of severe COVID-19 and IL-6R antagonist Tocilizumab may be the key, International Journal of Antimicrobial Agents, 29 March 2020; see also Cytokine release syndrome in severe COVID-19, AAAS, 17 April 2020). Another pathway could be the invasion of the Central Nervous System and involving of the brain stem, which could explain patients' oxygen starvation. Both pathways have recently been rejected by researchers, as supplied data is still insufficient to prove that either cytokine storm or CNS involvement plays a major role in oxygen starvation- beside multiple organ failure.

Multi-factor assessment
Foremost, it must be noted that a homogeneous kind of ARDS does not exist. ARDS is a definition to describe acute onset of hypoxaemia (ARDS subphenotypes: Understanding a heterogeneous syndrome, Critical Care, 24 March 2020). Likewise, immunity response in SARS-CoV-2 patients is heterogeneous: treatment of immunity response is not a 'one size fits all' matter. This is even further complicated by the fact that immunomodulation should not impair antiviral activity in the host.

What should and could be learned from SARS-1 (2003) when it comes to assessing medical factors?
A comprehensive, multi-factor assessment could be of use to explain SARS' pathways from invasion to deterioration. The body is a system in which the affected parts each contribute to severity of disease. Immunity and cardiovascular mechanisms are intertwined, therefore these mechanisms cannot be considered to contribute independently to deterioration. These systems are a basic necessity to keep the machine going. I'd say that SARS causes imbalance in homestasis, characterized by ACE2 impairment and imbalance of the RAS, damage to endothelial tissue, instigation of the inflammatory soup/cascade, thrombotic events- given that these mechanisms enhance each other into an overdrive mode. The interplay between inflammation and venous thromboembolism is not simply one of cause and consequence, but an intertwined interaction. For example, see: 'The role of inflammation in Venous Thromboembolism', Frontiers in Pediatrics, 23 May 2018, 2018:6:142. What SARS-CoV-1 has made clear, is that coagulation disorders occur frequently in severe cases. Endothelial damage may be an early stage cause of an inflammation cascade, followed by thrombotic events. In a 2004 SARS review, it was said that the 2003 SARS epidemic experience should warrant increased vigilance against stroke and other thrombotic SARS-related events in future outbreaks of coronaviruses (Large artery ischaemic stroke in SARS, Journal of Neurology 251, October 2004).

I'll get to what has been intriguing me in the context of other disease case studies (cardiovascular) and what caught my attention again during the early phase of the SARS-CoV-2 pandemic: that is the plausible role of ACE2 as part of the RAAS system and the detrimental loss of ACE2 during infection with SARS-CoV-2.

The RAAS system and ACE
The Renin-Angiotensin-Aldosterone System (RAAS) regulates blood pressure and fluid balance. The RAS generates angiotensin II (Ang II), which binds to receptors in the brain, kidneys, vasculature and immune system. Angiotensinogen (Agt) is a substrate of renin. Renin cleaves Agt to Angiotensin I (Ang I), subsequently to be cleaved by ACE to Ang II. Renin is primarily expressed in the kidneys. Mast cells are involved in the release of renin. It was found in 2006 that release of renin by cardiac mast cells can be induced by ischemia (Classical Renin-Angiotensin System in Kidney Physiology, Comprehensive Physiology, Vol. 4 Issue 3, July 2014).

Bradykinin is a substrate for ACE. Bradykinin has vasodilator and natriuretic properties. ACE inactivates bradykinin and is therefore known as kininase II. ACE inhibitors increase the level of bradykinin (Unraveling the pivotal role of Bradykinin in ACE inhibitor activity, American Journal of Cardiovascular Drugs, 3 June 2016). The inhibition of ACE is associated with angioedema (Effect of bradykinin receptor antagonism on ACE inhibitor-associated angioedema, Journal of Allergy and Clinical Immunology, July 2017, Vol. 140 Issue 1).

ACE-AngII should be in balance with ACE2-Ang 1-7
ACE2 cleaves a residue from Ang I to form Ang 1-9 and converts Ang II to vasodilator Ang 1-7 (NCBI: gene ID), which blocks Ang II and inhibits ACE (ACE2, a new regulator of the renin-angiotensin system, Trends in Endocrinology and Metabolism, May 2004). In a 2008 study, it was proposed that loss of ACE2 expression and locally increased Ang II production triggered leakage of pulmonary blood vessels after SARS infection. Penninger mentions the catalytic inactivation of bradykinin metabolites by ACE2 (The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice, Experimental Physiology, 25 April 2008). Impairment of ACE2 during infection with SARS is likely the cause of disproportionate levels of bradykinin, which could lead to leakage.

Ang II is known to play a central role in endothelial dysfunction. Not only does Ang II increase blood pressure via vasoconstriction (the narrowing of blood vessels), actions on the Ang II type I receptor (AT1) adversely affects the vascular wall and enhances oxidative stress, resulting in endothelial damage and endothelial cell apoptosis. Oxidative stress increases expression of plasminogen activator inhibitor type I, resulting in the recruitment and binding of inflammatory cells to the endothelium, which leads to inflammation and thrombosis (A review of the role of bradykinin and nitric oxide in the cardioprotective action of Angiotensin-Converting Enzyme Inhibitors: Focus on Perindopril, Cardiology and Therapy 8, 1 October 2019).

Enhancement of ACE2 could be key (New agents modulating the renin-angiotensin-aldosterone system- Will there be a new therapeutic option?, Experimental Biology and Medicine, 19 July 2016). A recent follow-up of the 2008 study by Penninger proposes human recombinant ACE2 for another mechanism that seems plausible: the 2020 study shows inhibition of the virus by hrsACE2 (Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade hrsACE2, Cell Journal Pre-Proof, April 2020). Previously, a similar therapy was proposed involving recombinant human ACE2, rhACE2, to decrease plasma Ang II levels and increase Ang 1-7 and 1-5 (Recombinant human ACE2: acing out Ang II in ARDS therapy, Critical Care, 13 December 2017).

Next feature
In next feature, I will discuss the prevalence of thrombotic events and pulmonary embolism associated with SARS-CoV-1 (2003) and SARS-CoV-2. Twenty years of SARS has made clear that coagulation disorders occur in SARS cases- even patients who are casually deemed "not to be at risk" are in fact at risk of thrombotic events. Keep in mind that all of these mechanisms, from ACE2 impairment and dysregulation of the RAS, inflammation, thrombosis and thrombocytopenia (coagulation disorders) and cytokine storm are intertwined; these mechanisms and pathologies contribute to deterioration in severe cases of COVID-19.

The RAS and its relation to inflammation and coagulation disorders in COVID-19
 
In summary: slides
 
















donderdag 16 april 2020

De onderschatting van aërosole transmissie is in strijd met de basale wetten van de fysica

Waarom is de 1,5 meter afstand-regel onvoldoende?  
De 1,5 meter afstand-regel die door nationale overheden en WHO wordt aangehouden als richtlijn, is gebaseerd op achterhaalde onderzoeken. Richtlijnen die inhouden dat de veilige afstand maximaal 2 meter is, houden er geen rekening mee dat ademhalingsdruppels zich via wolken over langere afstanden verplaatsen. De "1,5 meter-afstand" is gebaseerd op een theorie van Wells uit 1930. De uitleg van het model is dat onderscheid moet worden gemaakt tussen grote en kleine druppels. Grote druppels zouden direct neerdalen. Kleine druppels zouden direct na uitademing/hoesten/niezen verdampen, omdat de omgeving kouder en droger is dan de longen, keel en neus van de persoon die de druppels uitademt. Daarbij worden alleen 'agressieve' vormen van uitademing, zoals hoesten en niezen, tot uitgangspunt genomen. Dit is een te beperkte opvatting: sinds 1946 is algemeen bekend dat ademhalen en praten uitstoot van grote hoeveelheden aërosolen veroorzaken (The size and the duration of air-carriage of respiratory droplets and droplet-nuclei, Journal of Epidemiology and Infection, J.P. Duguid, september 1946).

Druppels vliegen niet geïsoleerd door de lucht, maar via een turbulent gas cloud
Het model voor 1,5 meter afstand, gebaseerd op de theorie van Wells, schiet tekort omdat druppels zich niet zomaar door het luchtledige, ofwel geïsoleerd door de lucht vliegen, maar via een wolk van gassen en vocht worden verplaatst. Het werkelijke mechanisme wordt "multiphase turbulent gas cloud genoemd", waarmee wordt bedoeld dat ademhalingsdruppels, slijm, gassen uit de nabije omgeving en vocht zich verzamelen in de wolk. Afhankelijk van de luchtvochtigheid en temperatuur in de omgeving en de grootte van de virusdragende deeltjes, kan deze wolk wel 8 meter door de lucht reizen. Uiteindelijk dalen deeltjes neer op oppervlakken en blijven zij na evaporatie (verdamping van druppels tot gas) ongeveer 3 uur in de lucht hangen (droplet nuclei of aërosolen).

In een voorpublicatie waarin de aërosole transmissie van SARS-CoV-2 (verspreiding van het virus via de lucht) is onderzocht binnen ziekenhuisafdelingen, wordt vastgesteld dat de gemiddelde afstand van verspreiding van het virus 4 meter is (Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020, Emerging Infectious Diseases, Volume 26, Number 7, Juli 2020). De conclusie van deze studie is dat thuisisolatie ongeschikt is, omdat overige gezinsleden niet over professionele beschermingsmaterialen beschikken.

Ademhalen zorgt al voor het verplaatsen van deeltjes over 8 meter afstand
Simpelweg ademen kan ervoor zorgen dat virusdeeltjes zich over een afstand van 8 meter door de lucht verplaatsen. Het is begrijpelijk dat een "8 meter afstand-regel" niet haalbaar is in een drukbevolkte omgeving. Een veilige afstand kan om die reden niet los worden gezien van andere maatregelen. Het dragen van een mondkapje en het desinfecteren van oppervlakken zijn maatregelen die bijdragen aan het beperken van het risico op infectie.

De beperking van epidemiologisch onderzoek (in vergelijking met chemisch, biologisch en aërosolenonderzoek) is dat de reproductiefactor R0 wordt berekend op basis van de aanname dat mensenpopulaties en ademhalingsdruppels homogeen vermengd raken. Dit is een te beperkte berekeningswijze, omdat factoren als mechanische of natuurlijke ventilatie, invloeden van de buitenlucht en UV, temperatuur en luchtvochtigheid, maar ook de combinatie van druppeltransmissie en transmissie via aërosolen moeten worden meegerekend in het vaststellen van de reproductiefactor (What aerosol physics tells us about airborne pathogen transmission, Journal of Aerosol Science and Technology, 31 maart 2020).

1,5 meter afstand: dit model gaat ervan uit dat lucht zich niet verplaatst
Een laatste opmerking over de toereikendheid van een 1,5 meter afstand-samenleving. Sociale distantie van 1,5 meter is gebaseerd op de gedachte dat de lucht zich niet door een ruimte verplaatst. Dit model gaat uit van de 'ideale' homogene vermenging van ademhalingsdruppels en aërosolen en de homogene verdeling van mensenpopulaties in een ruimte ("Wells-Riley": well mixed air, model uit 1934). De 1,5 meter-regel negeert luchtstromen door een kamer. Luchtstromen kunnen virale deeltjes over grote afstand verplaatsen. Zo kan het gebeuren dat mensen die dicht bij elkaar zitten, elkaar niet kunnen besmetten, terwijl iemand op grote afstand door de verplaatsing van virale deeltjes via luchtstromen wél besmet raakt (The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?, Journal of Aerosol Science and Technology, 3 april 2020). Bovendien is het mechanisme van dispersie van invloed: door de generatie van en spreiding via aërosolen worden druppels door de ruimte gedistribueerd.

Bron:
Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19, JAMA Insights, 26 maart 2020

Welke belangrijke onderzoeksvragen moeten nog beantwoord worden?
1. Is aërosole transmissie of transmissie van SARS-CoV-2 via geïnfecteerde oppervlakken, in staat om cellen in vivo te infecteren?
Dit is een belangrijke kwestie, omdat nog niemand de vraag heeft beantwoord of dierlijke cellen daadwerkelijk besmet worden via de lucht of via objecten. Weliswaar hebben Van Doremalen en de onderzoekers aan het Nebraska University Center aangetoond dat het virus 3 uur in de lucht kan blijven hangen en in luchtsamples gemonsterd kan worden, maar deze resultaten zeggen nog niets over de besmetting van een dierlijke cel.

De Duitse viroloog Streeck heeft recentelijk opgemerkt dat niemand via winkelkarretjes of een deurklink besmet raakt. Die stelling heeft hij niet onderbouwd. Het gaat om een hypothese die door sommigen wordt gepresenteerd als 'resultaat'. Zijn veldonderzoek zal over drie weken worden afgerond. Het is onjuist dat Streeck beweert dat het virus niet overleeft op voorwerpen, omdat virale deeltjes bewezen tot 72 uur lang stabiel blijven op oppervlakken. Het contactonderzoek dat door hem is geïnitieerd is weliswaar nuttig om te achterhalen in welke situaties/omgeving personen mogelijk geïnfecteerd zijn, maar contactonderzoek zegt niets over de wijze van transmissie (The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?, Journal of Aerosol Science and Technology, 3 april 2020). Onderzoek naar de daadwerkelijke infectie van dierlijke cellen via de lucht en oppervlakken is dus dringend nodig!

2. Wat is de gemiddelde virale lading (viral titer) in het ademhalingsvocht en in de uitgestoten aërosolen?
Om de vorige en volgende vraag te kunnen beantwoorden, zal per onderdeel van het respiratoire systeem (longen, stembanden, keel, neus) de gemiddelde virale lading van het ademhalingsvocht en de door de luchtwegen uitgestoten partikels moeten worden gemonsterd.

3. Wat is de minimale besmettelijke dosis SARS-CoV-2?
De drempelwaarde van de besmettelijke dosis SARS moet worden berekend om te kunnen onderzoeken of dierlijke cellen daadwerkelijk via de verspreiding van aërosolen en via contact met geïnfecteerde oppervlakken plaatsvindt.

4. Hoe moet de "open-air factor" worden meegewogen in het bepalen van de reproductiefactor R0? 
De "open-air factor" OAF refereert aan de invloed van natuurlijke luchtstromen en UV op de destabilisering van virussen en andere infecten. Moderne ziekenhuizen zijn over het algemeen slechter in het beperken van de verspreiding van virussen dan ziekenhuizen uit de periode vóór 1950. Ouderwetse grote ramen die geopend kunnen worden zijn bevorderend voor de beperking van verspreiding van virusdeeltjes in het ziekenhuis (The open-air factor and infection control, Journal of Hospital Infection, 9 april 2019). Met andere woorden: binnen zijn is niet ideaal, slechte ventilatie is helemaal funest. Een studie uit 2013 bevestigt het vermoeden dat moderne ziekenhuizen met kleine ramen (die niet open kunnen) en slechte airco de verspreiding van SARS bespoedigen. Mechanische ventilatie is niet per definitie slechter dan natuurlijke luchtstromen: het gaat erom dat 'cross-ventilatie' wordt bereikt, waarbij de lucht van binnen naar buiten stroomt (Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives, Journal of Hospital Infection 84, 20 juni 2013).

In 2012 is Nederland legendarisch geworden door een ventilatieblunder, waarbij 67% van de mechanisch geventileerde huizen over vieze filters beschikte en meer dan 50% van de woningen van sterk vervuilde lucht bleek te worden voorzien. Grotendeels hing deze ventilatieblunder samen met het feit dat Nederlanders weigeren om zich aan gebruiksvoorschriften te houden.

De reproductiefactor R0 zoals die nu door epidemiologen wordt berekend, moet de OAF meewegen om een realistisch beeld te krijgen van de invloed van mechanische en natuurlijke ventilatiemethoden op transmissie onder grote groepen mensen.

1,5 meter afstand is onvoldoende
Nog te beantwoorden onderzoeksvragen over transmissie van SARS-CoV-2


vrijdag 3 april 2020

FAQ Coronavirus on symptoms, viabililty on surfaces and in aerosols, prolonged faecal shedding and the need for serological testing

What symptoms of SARS-CoV-2 are common?
Of 99 patients, 83% presented with fever, 82% with a cough and 31% with shortness of breath. Symptoms such as muscle ache, confusion, headache, sore throat, diarrhoea, nausea and vomiting were also observed. The NHS, RIVM and other health autorities seem to present rhinorrhoea and sneezing as main symptoms of COVID. Rhinorrhoea was observed in 4% of COVID cases (Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, The Lancet, 30 January 2020).

Another case study, Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study, confirms the abovementioned. Of 30 patients, the most common symptom was fever (96%), followed by cough (22%) and dyspnoea (17%). In severe cases, serum alkaline phosphatase was significantly higher than in mild cases. Multifocal ground-glass lung opacities were seen in 74%.

According to a study involving 191 patients the median time from illness onset until discharge is 22 days. The median duration of viral shedding for survivors is 20 days. Among 29 patients receiving lopinavir/ritonavir treatment, the median time of viral shedding is 22 days. In critical patients, the median duration of viral shedding is 24 days, the longest viral shedding observed being 30 days (Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, The Lancet, published online on 9 March 2020).

How viable is SARS-CoV-2 on materials and in aerosols?
Viability refers to the time a virus can 'survive' on materials and in aerosols. Airborne transmission is the transmission route of viral particles through air. In aerosols, SARS-CoV-2 proved to remain stable up to 3 hours. The virus remains stable for up to 72 hours on plastic, up to 48 hours on stainless steel,  24 hours on cardboard and 4 hours on copper (Aerosol and Surface Stability of SARS-CoV-2 as compared to SARS-CoV-1, The New England Journal of Medicine, 17 March 2020).

Air samples taken from airborne infection isolation rooms in Singapore were all negative (Air, Surface, Environmental and Personal Protective Equipment Contamination by SARS-CoV-2 From a Symptomatic Patient, JAMA, 4 March 2020), indicating that inducing air flow by regular ventilation of rooms is important. A preprint claims that air samples taken at the Nebraska Medical Center contained SARS-CoV-2. The highest concentration was recovered from an air handling grate. Air samples were found to be 63.2% positive by RT-PCR, while none of the patients were observed to cough. The highest airborne concentration was observed while a patient was receiving oxygen through a nasal cannula (Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center, preprint available via MedRxiv).

Caution is recommended. What has to be proven yet is:
1. The infection of in vivo cells through airborne transmission;
2. Given that airborne transmission proves to be a route to infect hosts' cells, how concentration of viable loads, expelled through aerosols, relates to severity of SARS-CoV-2.

Why is hand hygiene important?
The fecal-oral route and respiratory droplet-oral route are two possible transmission routes. Note that contamination through surfaces and faeces is not the only transmission route, but the fecal route must not be understated as a shedding route of SARS-CoV-2 (Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes, Emerging Microbes and Infections, 17 February 2020).

One study supplied evidence that some SARS-CoV-2-infected patients can harbor the virus in the intestines during the early stage of the infection, whereas in SARS-infected patients, intestinal infection was observed during the late stage of the infection. A study involving 1099 patients confirms that asymptomatic people might be shedding virus through stool. Eight out of ten children tested positive on rectal swabs, even after testing negative on nasopharyngael surveillance (COVID-19: faecal-oral transmission?, Nature Reviews Gastroenterology & Hepatology, 25 March 2020).

There is evidence for prolonged presence of SARS-CoV-2 in feces. For 5 weeks after the patients' respiratory samples tested negative for viral RNA, virus was detected on faecal sampling. One patient had positive faecal samples for 33 days after testing negative on respiratory sampling; another patient had a prolonged faecal shedding for 47 days after first symptom onset (Prolonged presence of SARS-CoV-2 viral RNA in faecal samples, The Lancet Gastroenteroloy & Hepatology, 19 March 2020).

Is routine surveillance sufficient?
No: routine surveillance typically involves oral sampling, which is not accurate in respect of the difference in viral loads during different stages of a SARS-CoV-2 infection. In a January 2020 molecular study, of the patients with viremia blood, none tested oral or anal positive, indicating that patients should not be discharged on oral negative swabbing alone. This confirms the necessity of serological testing using IgM and IgG (Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes, Emerging Microbes and Infections, 17 February 2020).

Moreover, in a SARS-CoV-2 infected patient with mild symptoms, ASC peaked on day 8 after onset. Antibodies are observed until day 20 (Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19, Nature Medicine, 16 March 2020). Rebound of viral load after 5 days was observed in one cohort study (Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2, The Lancet, 23 March 2020).

Thus: a policy that demands discharging a patient on oral negative swabbing is contrary to findings concerning patients testing positive on viremia blood sampling. Add a health policy of anal swabbing and serological testing. One should be aware of the fact that feces of a SARS-CoV-2 patient might test positive until a median of 5 weeks after onset. Awareness and adjustment of health policies should reduce the risk of contamination with faecal shedding of SARS-CoV-2.